Главная страница » Яндекс открыл код библиотеки машинного обучения CatBoost

Яндекс открыл код библиотеки машинного обучения CatBoost

Компания Яндекс объявила об открытии исходных текстов библиотеки машинного обучения CatBoost, которая реализует механизм градиентного бустинга на деревьях решений и позиционируется в качестве преемника алгоритма MatrixNet, применяемого в сервисах Яндекса для ранжирования, прогнозирования и формирования рекомендаций. Код библиотеки написан на языке C++ и распространяется под лицензией Apache 2.0. Для библиотеки подготовлены биндинги для языковPython и R, а также инструментарий командной строки и интерфейс визуализации процесса обучения.

В отличие от MatrixNet в CatBoost реализован более универсальный алгоритм, который не ограничивается числовыми данными при обучении модели, выдаёт более точные результаты при ранжировании данных и подходит для решения более широкого спектра задач, вплоть до промышленности и банковской сферы (например, прогнозирование расхода купюр в банкоматах). В настоящее время CatBoost уже внедрён для ранжирования ленты рекомендаций в zen.yandex.ru и применяется для расчёта прогноза погоды в Яндекс Погода. Кроме Яндекса CatBoost применяется в Европейском центре ядерных исследований (ЦЕРН) для обработки данных эксперимента LHCb на Большом адронном коллайдере.

Предлагаемый в CatBoost метод машинного обучения позволяет учитывать категориальные признаки и эффективно обучать модели на разнородных данных, таких как местонахождение пользователя, история операций и тип устройства. При этом, CatBoost демонстрирует очень хорошую производительность, обгоняя при решении различных задач классификации данных такие библиотеки, как LightGBMXGBoost и H2O. Предоставляемый библиотекой API достаточно прост и требует написания около 10 строк кода для выполнения задач по классификации данных. Создание и тренировка модели может производиться из командной строки.

Источник: Opennet

Добавить комментарий

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.